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ABSTRACT

It is shown that each feasible point of a positive semidefinite linear

complementarity problem which is not a solution of the problem provides simple

numerical bounds for some or all components of all solution vectors. Conse-

quently each pair of primal-dual feasible points of a linear program which

are not optimal provide simple numerical bounds for some or all components of % %

all primal-dual solution vectors. For example each feasible point, that is

01,0)10, of the linear complementarity problem w-Nz+q>0, z>O, zTw-O,

where M is positive semidefinite, provides the following simple bound for any

solution i of the linear complementarity problem:,' "-

I.- A A.--,, "'.

Z^T 'min

where I = {tit>0}. If Q>0 then this inequality provides a bound on the .

1-norm Jlll 1 of any solution point. Similarly each feasible point (x,%)>0 il

of the primal linear program min cTx subject to y - Ax - b >0, x> O, and

each feasible point (uv)>O of the dual linear program max bTu subject to

v = -ATu + c > 0, u > 0, provide the following simple bounds for any primal

optimal solution (Rj) and any dual optimal solution (5, ):

T ^ TA TAVifj x (cTR -b u)/min V i,,j 1 ui<(cTx 'b u)/rain YieI.

where J- {ilV>}0) and I={i9 1 >0}. If '>0 we have a bound on II~lll, and

if. Y>0 we have a bound on 1II11. In addition we show that the existence

of such numerical bounds is not only sufficient but is also necessary for the

boundedness of solution vector components for both the linear complementarity

problem and the dual linear programs. a'.,
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SIGNIFICANCE AND EXPLANATION

urprisingly simple bounds are given for solutions of fundamental

constrained optimization problems such as linear and convex quadratic

programs. It is shown that every nonoptimal primal-dual feasible point

carries within it simple numerical information which bounds some or

all components of all solution vectors. The results given permit one

to compute bounds without even solving the optimization problems.
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SIMPLE COMPUTABLE BOUNDS FOR SOLUTIONS
OF LINEAR COMPLEMENTARITY PROBLEMS

AND LINEAR PROGRAMS

0. L. ?angasarian

1. Introduction

The linear complementarity problem of finding a (z,w) in the

2k-dimensional real Euclidean space R2k such that

(1.1) w = Mz + q > O, z >O , zTw - 0

where M is a given kxk real matrix, q is a given kxl real vector
k

and zTw denotes the scalar product twt , is a fundamental problem
1-1

of mathematical programing which includes linear and quadratic programming

problems, bimatrix games El] and free boundary problems [2]. An important

question of both theoretical and practical interest is the boundedness of

the solution set of (1.1) which already has received attention in [8,3,6)

in the form of necessary and/or sufficient conditions for this boundedness.

In this work we provide simple numerical bounds for some or all components

of any solution vector when M is positive semidefinite. In particular we

show that each feasible point (R,Q), that is (2,) > 0, which is not

a solution of (1.1), contains information on the magnitude of some or all

components of all solution points. For example Theorem 2.2 provides the

following simple bounds for any solution (, of (1.1) in terms of any

feasible point (2,Q) when M is positive semidefinite

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.
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-T mi

i.lI < nT min

(1.2) Ii;jlI _ mn

where I - {ilQi>01, J = {ij2i>O}, zI:= ziej and I-II, denotes the

1-norm. Note that if either I or J is empty then (^,Q) is a solution

of the linear complementarity problem (1.1). On the other hand if w > 0,

then z and (1.2) provides a bound on the 1-norm 11111, of any solu-

tion (,) of (1.1). Similarly if -> ; then w3 = ; and (1.2)

provides a bound on IlIll. Theorem 2.2 also provides a necessary and

sufficient characterization for the bounaedness of zi ;j and (!,,;j)

for I, J c {l,...,k) where (i,w) is any solution of (1.1) and M is

positive semidefinite. In particular it shows that is bounded if and

only if there exists a feasible point (2,^) > 0 such that ;I > 0; ;j is

bounded if and only if there exists a feasible point ( ,) > 0 such that

a> O; and (!,; wa) is bounded if and only if there exists a feasible

point (1,Q) ! 0 such that (i ,^i) > 0. Theorem 2.2 can be used, as in

Algorithm 2.6, to determine which components if any of the solution set are

bounded, without solving the linear complementarity problem (1.1). Theorem

S2.2 also provides necessary conditions for the boundedness of solution com-

ponents of (1.1) when M is copositive plus, that is M satisfying (1.5)-

(1.6) below. In Theorem 2.8 we give bounds for the unique solution of the

positive definite linear complementarity problem.

-.' ,'-a. -% - ' '.-. . " ." ," ., . .*, .. , , , "'' '.",* . " -. *, - . .. - . •,
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Because a linear programming problem is a special case of the linear

complementarity problem [1], the bounds of Section 2 can be used to obtain

bounds for solutions of the dual linear programs

(1.3a) min cTx s.t. y a Ax - b > 0, x > 0

(1.3b) max bTu s.t. v a -ATu + c >0, u >0

where A is an mxn real matrix, c and b are nxl and ex1 real

vectors respectively. In [7] Robinson and in [5] this author both gave

bounds for solutions of linear programs which involved a constant which

was difficult to evaluate in general. By contrast in Section 3 we provide

bounds for solutions of (1.3) which involve no constants or parameters.

For example Theorem 3.1 provides the following simple bounds for any solu-

tion (ij)- , of the dual linear programs (1.3) in terms of any pair
X(;,)- (G,Q) of priml-dual feasible points:

l jIlll < (cT -bTG)/m n vi eal

Il 1 , (JT -biu/min EJc 1  u }

(1.4) i1  <. (c T.A - bT6)/min {vJ 1 9 1 1

II 11 . (cT._ bTA)/min 9iEo12 x u 2

IIP' 1, l1 - (cTx bTu)/min { I 2 J }

9P29 i2 11 c'2 W i Y i 2 CJ

where Jl - {tv1i>0}, J2 -
{(ix1

•0}, 11 = {u >01 and 12 {tI >0}.

The bounds (1.4) show that every pair of primal-dual feasible points which

are not optimal (that is at least A $ 0 or V A 0) can provide some

.,, .. .-. ...... ... : '.-'*' " ~~~.00. - . . . . . . .• . - . .. . .
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information on the size of the solution set of the dual linear programs

(1.3). Note that if either I1 uJ2 or l u 12 is empty then (R,) - (i,)

Is optimal. If on the other hand v > 0, then J " and (1.4)

provides a bound on the 1-norm IIXIIl of any solution (R, ) of (1.3a).

Similarly If ; > 0, then = and (1.4) provides a bound on the
y 1 2

1-norm Ila 1l of any solution ( of (1.3b). In Theorem 3.4 we con-

sider a nonsymmetric dual linear programming pair and provide numerical

bounds for its solution set.

We describe briefly now our notation. All vectors will be column

vectors unless transposed to a row vector by a superscript T. For a vector

x In the n-dimensional Euclidean space Rn . xli will denote an arbitrary
n

but fixed norm and lixllp will denote the p-norm )ixiP ( -I I l xijp )p

where I < P < - and IIxfII:- max xi1 . For an mxn real matrix A,
l <<n

At denotes the ith row and A. denotes the jth column, while IJAlIp

denotes the matrix norm subordinate to the vector norm 
t 'e1p,. that Is

IIAIIP I max. IJAxIlI. The consistency condition IAxIlp ;I IlAIIp IlxlIp

follows immediately from this definition of a matrix norm. For a subset

J c {1...,n}, x or xtiEwill denote those components xi of the vector

x in Rn such that ieJ. Similarly for Ic{l,...,m, AI will denote

those rows Ai of A such that i E I, while A. will denote those

columns A. of A such that j e J. A vector of ones in any real finite

dimensional Euclidean space will be denoted by e. A kxk real (not

necessarily symmetric) matrix M is said to be copositive [1] if

(1.5) z > 0 zTMz > 0

.** .. , .. ... . ..-. . ...-..- . - . . ..... . --- .-- ,., ,
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M is said to be copositive plus [1] if it is copositive and

(1.6) z >0, ZTMZ - 0- (M+MT)z - 0

A k xk real (not necessarily symmetric) matrix M is said to be positive

semidefinite (definite) if

zTMz >0 (>0) for all z 0 0

Note that a positive definite matrix is also positive semidefnite, while

4 a positive semidefnite matrix is also a copositive plus matrix.

N

--.

' 0 f.'" .c ,..,2 ';'._ ~ ' - ' ' % .._.-'-".-", .. -1-"-" "- -.. ,.....-.-'''...-''-'-'.-'.-' '.
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2. Bounds for Solutions of Positive Semidefinite Linear Complementarity

Problems

We begin by a simple but useful identity.

2.1 Lemma Let M be a kxk real matrix and let q be a kx1 real

vector. Then for any z and 1 in Rk such that iT(MI+q) * 0 it

follows that

(2.1) zT(Mz + q) T(Mz +q) + zT(MI+q) + (z-)TM(z-1)

Proof By direct algebraic verification. 0

Before establishing the principal result of this section, we need to

define some sets. Let I and J be subsets of {1,2,...,k}. Define

S:- {(z,w)lz>O, w-Mz+q>O}

S:- {(zw)l(zw)CS, zTw-o

S j:- {(z,w)I(z,w) CS (zI , wJ) >o}

'' sxo:" {(zip wj)llz,w) C

Z Z:"1 {(z~w) I(z,w) FeS. zi >0}

:1 zj Iz (z 'w) C 9') . 2:= {z I(z,w) )
*. %

, Wi: {(z,w) I(z,w) C S, wI > 01

.! WI: = {w1I(Z,w)S}, W: {wI(z,w)ES}

With these definitions it is possible to characterize the boundedness of

solutions of linear complementarity problems in terms of simple numerical

bounds as follows.

Ap.. _ .' _r '.~, _ _ . . _ .. ._..' ' ,,:, , .",~ ' * . " " . ... . ., ..

& _ , , . . , , , , . _ . . . _ ; , -,, -, : ., o ,, , ,.-.; , ... . . ..... ... . . ., ... -.. . . . .
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2.2 Theorem Let M be a k x k copositive plus matrix, let S i 0 and

let I and J be subsets of {l,2,...,k). Then

(a) WI # @"ZI bounded

(b) Z,1 $0' bounded

(c) SjI 9,SIj bounded

If in addition 1 is positive semidefinite then

(a') (1) $ 4- 0 (11) Z1 bounded 4- (11t) /WI $ 0 and
III11 I zTQ/mtn -EI

(b') (1) Z] -0 (111 WI bounded (iii) z1  I 0 and

V;I Hi , V(zQ) zi

-. (c') (1) SO 0 - (ti) Ii bounded (iii) Sj $0 and

V(IAJ) §1 Sj' V(2,Q) E SjI

Proof First by Lemke's algorithm [1], it follows that S 0 since S $ 0.

. (a) We shall prove the contrapositive implication.

-a . . . . ....- .

. . .- . . o . , - . o o o . o. " ". " . a ." • ° ,.°.°" ."." " ."," ° ." ° . . . . " " . ". " , . "." '. " ° . - . .,.. - . ," ,- .. ,, . , ,. ,, :'' ";: ''; " " ": ': '"'':" ' " "'" ":' :": : :%: '" " : "" " """" %" "" " '"" " ""'"," % ,'" """ " ''"%''
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WI a Mz + q 2 0, z > 0, M z + q,> 0 has no solution

T uhM<u0, u >0, 0$ A ) > 0 has solution

(By Motzkin's theorem of the alternative [4])

1MTu <0, u 0o, q Tu < 0 has solution, or

M Tu < 0, u > 0, q Tu = 0,0 U, u 0 has solution

4MT u < 0, u > 0, qTu - 0,0 $U, ~0 has solution

(q Tu < 0 alt ernative excluded by S 0 $

~UMu -0, M Tu <0, u '-0. q Tu -0, 0 $U, 20 has sv tiun

(By copositivit ,f M)

~MU - -M Tu > 0, u > 0, q Tu = 0, 0$# U, > 0 has solut ..i

* (By copositivity plus of M)

-01+ )ue for any Q~~g any X >0 and u >0,

MU - -MT u > 0, q Tu =0,0 # $ u 1>0

unbounded.

(b) We again prove the contrapositive implication.

z ~ Z = Mz + q 20, z >0, z1 > 0 has no solution

4i6MT U < 0, U >0, 0 $ TuI) < 0 has solution

(By Motzkin's theorem)

4mhMT u < 0, u > 0, q Tu = 0, 0 W Mu),1 ~0 has solution

(Alternative q Tu < 0 is excluded by S $*

~MU a -M T u,, u>0, q T u0, 0$(Mu) =-(MT U), has solution

(By copositivity plus of M)

+ XuZE fo r any R~)E§ any X > 0 and u > 0,

Mu -M u 20, q u -0,0 $(Mu) 1 >0



...
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(c) S bounded implies ZI bounded and Wj bounded. By (a) above it

follows that WI # 0, and by (b) above it follows that Z 0. Let

(2,Q) C WI and let UM E Z . Then

" e Z nW I - Sl

(a') The implication (1)-(i) follows from (a) above. The implication

(ii) (iii) is evident. We now establish the implication (i)-"(iii)

by means of Lemma 2.1. Let (ww) WI and i1 1 . Then by Lemma 2.1

and the positive semidefiniteness of M we have

_TQ . -T (M2+q) > T(M^+q) + AT(M!+q) > i +q)

II i1I min Qi I

Hence

Ilizll < iT /rain Ai(

(b') The implication (1)4-(11) follows from (b) above. The implication

(ii)*(iii) is evident. We now establish %1)-(iii). Let (2,Q) ZI

and let Wl WI" By Lemma 2.1 and the positive semidefiniteness of

M we have

ATA -TA +J- >T j -z w.-T >z wT + zTw > ZI > nwiI m ^z

Hence

N, 11 1 zT i/ nz iE

(c') Again the implication (i)"(ii) follows from (c) above. The implica-

tion (ii)--(iii) is evident. To establish (i)-(iii), let (,G) ESJI

.4 ,

.4. . . . . .

*,.'.. ',., ,° . .' . '.' • ,% .. ",'' - - -. . . . ",". . ... ,. . .. -. • •-. .. .-
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and let ( ;j W) E S " Then by Lemma 2.1 and the positive semidefi-

S..,- niteness of M we have

^T -T-II mmT >j iT ^
-~~~~ II Jiij I1 iJ e

. .Hence

I 1 <2T/wmin {-i(J, Wi} 1 0

4._ 2.3 Remark The sets I and J of Theorem 2.2 above may be taken as single-

tons in which case the bounds in (a'), (b') and (c') simplify respectively to

z <~T 1  fo r i i Ui ( W i )EW

i T. for zi' ( 1 , 1 wiEZ

i. + j< T;/min {Z^ Wi for i, ) , (,Q) S

-. 2.4 Remark The positive semidefiniteness assumption plays an indispensible

"role in obtaining the numerical bounds of parts (a'), (b') and (c') of

Theorem 2.2. It is unlikely that such numerical bounds can be obtained for

', the copositive plus case. Whether the forward implications of parts (a),

(b) and (c) of Theorem 2.2 also hold under a copositive plus assumption is

an open question. However when I = (l,2,...,k}, the forward assumption

of (a) does hold for a copositive plus M. See Theorem 2, (ii)4(ix) [6].

The following corollary which is a direct consequence of part (a') of

Theorem 2.2 provides a practical method for determining which components of

the solution set are bounded and which are not without solving the linear

complementarity problem (1 .).

2.5 Corollary Let M be a k x k positive semidefinite matrix and let

K. S $ *. There exists a partition luL of {l,2,...,k} such that
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(2.3) ZI is boundtd, ZL Is unbounded

or equivalently such that

(2.4) W% I , WL.-

One way to determine the partition I uL of the above corollary for

a given linear complementarity problem is to solve at most N(I) linear

programs, where N(I) is the number of elements in I, as in the follow-

ing Algorithm 2.6. This algorithm determines the partition I uL of

{1,2,...,k} for a positive semidefinite linear complementarity problem

(1.1) such that is bounded and k is unbounded, by determining WI

such that W I and WL such that WL - . The algorithm which does

not solve the linear complementarity problem, solves at most N(I) (but

potentially considerably fewer) linear programs.

2.6 Algorithm (Determination of I uL a {1,2,...,k} such that Z is

bounded, ZL is unbounded, for a positive semidefinite N)

Step 0: Set j - 0, 10 = 0, L0 a {1,2,...,k)

Step 1: Solve the LP: max I (Mz+q) s.t. Mz + q>O, z > 0

If LP is infeasible, LCP (1.1) is infeasible. Stop.

If LP max 0 0, set I - L (1,29...0\1 Stop.
If 0 < LP max < -, set z(x) -i where i is an LP solution.

If LP max *a, set z() = z + Ad where z + id is feasible

for all X > 0 and J M,1d > O.

Set I+I -I u 0ilaiz(X).+ q >o, X.

'L +I -{192,...,kl\S.+I

'a' , ,
"

% ' J ""."" " " • ".% % " " "" % 9 " "" "" "" ." ." "" * " ' 
T e _ ." -o' ". ". ." ,.".o' % . " . - "o . '.". ' . -,.: ". . .. . . . , , .. .. ,
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Step 2: J + 1 J

Step 3: Go to Step 1.

-i 2.7 Remark The LP solutions of Algorithm 2.6 can be used in conjunction

with Theorem 2.2 (a'iil) to give numerical bounds for iIII1l, i1 cZi .

When N is positive definite, additional simple bounds can be

obtained as follows.

2.8 Theorem Let N be a k x k positive definite matrix with a > 0 being
N+T

the smallest eigenvalue of + and B > 0 the smallest eigenvalue of

Then the unique solution (i,;) of the linear complementarity

(1.1) is bounded by

(2.5a) max {0, l1I12 - (zTQ/0) ) ., IIzlI . I11112 +

(2.5b) max {0, 11112 - (^Tz/l) } IW112 < 112112 + (Tz/ 8)

for any feasible ' >.0, Q -uM + q,10.

Proof By Lemma 2.1 we have that

Hence

11112 < 1Zl12 + I1A- '112 < 11 ll2 + (^T/a)

which gives the second inequality of (2.5a). The first inequality of (2.5a)

follows from

Zll2 1 11_Zl2 + Ilz112 l_ 1i1ZI2 + (zT/A)

-,, "S "?-',,. . . "'-",. .'. -..-.- ,-,.- """ . , . . . , . ,. ., .. ,..,, ,. , . ,,,al .' " 'J" "F " . ' ". " . . ; , ' ' " '""''",•: :.:"": """

'. .' '..,.."''"".. .. ..'. ....,..',;, ,-.", ,. .-,- . .

w ,,., ' .. . 4,,o,, , ,. .... .-. ,
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To obtain (2.5b) note first that N is nonsingular, for if it were

singular then Nz - 0 for some z # 0 and consequently zT Mz - 0 which

contradicts the positive definiteness of M. Furthermore for 0 0 y c Rk

we have zaM- I 0 and

yTN-ly a zTMTlM - Tz TT - zMz > 0

Hence N 1  is positive definite. For a nonsingular N the linear comple-

mentarity problem (1.1) is equivalent to

(2.6) z - M'Iw - M'lq, w > 0, wTz " 0

Hence (2.5a) of this theorem applied to (2.6) yields (2.5b). 0

1%
I',

-S • .i. . .. i. 1

,.'• , .:..... . . . . .- ...... , .'... . . ,.,,
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3. Bounds for Solutions of Linear Programs

9 We begin this section with some results which are direct consequences

of Section 2. These results follow by considering the pair of dual linear

programs (1.3) as a linear complementarity problem with a skew-symmetric,

and hence, positive semidefinite matrix. Later on in this section we shall

obtain bounds for solutions of linear programs with explicit equality

constraints.

By considering the dual linear programs (1.3) as a linear complemen-

tarity problem [1] defined by (1.1) andN -(A ' T) , q : ( c) ( )
T(3.1) b , z:- -w:-

the following theorem is a direct consequence of Theorem 2.2.

3.1 Theorem Assume that the dual linear programs (1.3) are both feasible

and hence both solvable. Let caret variables (a,5), (0,9) denote primal

and dual feasible vectors respectively, that is

(3.2) - AA - b > 0, u -ATU + c 10, G > 0

and let bar variables (ij), (i,) denote primal and dual optimal vectors

respectively, that is

(3.3) ; - A; - bj 0, > 0,. -A T + c >1O, >0, c T R- b Ta-

*Let J c (1,2,...,n} and let I c {1,2,...,ml. Then the following

equivalences hold:

iqL '- ,, 
° 

e : ; V _' - ,_' , . - " ., ' , ., - . - - " , - , - . . - , - . - - . - - . - - . -, - .

'.I ,, • . :. " .• . , . . . . . . . . . • • • • . . -, . . . " % . . . . . . • - . • . . . . . .
** '.',." ,' . Y %\I.'.,..'. , ,, . . . " .- '.- -. " "• ." .. .:. ".-.. *\-*.- ...- .* * * . • .. -,-. . : . . . .
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(al) vj> 4,* Vij boun ,d i >]Q 0 ; Vlig), ¥O s.t. 9 > 0:

II~~olll <c Tx" bu)/min v-c

PNl ( jeJ
iA

(a2) 9 > 0 V5, bounded - > 0; V(i,O), Vx s.t. Y! > 0:

I{ zll < ( T Ab~ )/min ^i~
- cR T bTu ye

(b]) 3*j >0 V ¥ bounded - x J>O; V(0,G), VR s.t. x >O:

IIJl <(cT. bTG)/min jj

(b2) Gi >O VjI bounded K- I>0; V(i, ), Vu s.t. uI>0:

Iej it-

II jll <_ (cT bT/m n { J G!I

~~(c2) 4P , 0. R > O~'V(iJ,,I ) bounded~- /ggj>O, x1>0; V(5,90, YX s.t. Yo>O, XI>O:

K11 jII-I , (CTlbTG)/min {9'%*_ ., .

3.2 Corollary The quantity c R n parts (al), (b2) and (cl) of Theorem 3.1

can be replaced by any upper bound a to min cTx s.t. Ax > b, x > 0, while

the quantity bTG in parts (a2), (bl) and (c2) of Theorem 3.1 can be replaced

by any lower bound 8 to max bTu s.t. ATu < c, u > 0.

.

5 Proof To prove the first part, set X in (al), (b2) and (cl) equal to a

solution i of (1.3a) and note that cT; - cTi < a. To prove the second part,

set ^ in (a2), (bl) and (c2) equal to a solution i of (.3b) and note that

-bTa a -bT -.

. . .. , ..
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3.3 Remark When the index sets I, J are taken as singletons, the first

equivalence in each of the statements (al) to (c2) of Theorem 3.1 reduce to

Theorem 3b of Williams [11]. In [10] Williams characterizes boundedness of

components of feasible, but not optimal, points of linear constraint sets.

In [9] Williams characterizes the boundedness of the totality of all the

components (in contrast with individual components) of optimal points of

linear programs. None of Williams' characterizations contain quantitative

bounds like ours.

We turn our attention now to the nonsymmetrtc pair of dual linear

programs

(3.4a) min cTx s.t. Ax - b, x > 0

(3.4b) max bTu s.t. v - Tu + c > 0

and establish the following bounds for their solutions.

3.4 Theorem Assume that the dual linear programs (3.4) are both feasible

and hence both solvable. Let caret variables denote primal and dual

feasible vectors, that is

(3.5) A - b, > 0, V - -ATA + c > 0

and let bar variables denote primal and dual optimal vectors, that is

(3.6) Ai b, R> 0, -- AT + c> 0, c - b - 0

V.,

Let Jc{l,2,...,n) and Ic{I,2,...,m}. Then the following equivalences

4.- hold:

% %

.'. ,i"".." " .. '.''.''. %'%" "" , .I .*. .".".".".. . .. " ..' %..."..'. . " .' -... '..' . '. ..:"
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( i)t) 3'j>00(it) Vj bounded,-o(ii)K 3vj>O; V(j,, VG s.t. iJ>O:

\\ Ilijo11_(cT -bT )/Min 9j,

(a2) (1) 32>O and rows of A 1tn. indep.0-(ii) Vi bounded

0,0(iii) x >O and rows of A lin. indep; V(5,G), V >O:

K jJIIJ(AAT -_AII1 (IIcIIlcTi T)/min
)-' ll (Il lll (c - b u)/ l ~i )

(bl) (i) 3x j>00-(00) V; bounded** (i11) x > 0; V(;,UA), V*' s.t. x >O0:

K il IvI < (cTx bT)/min l

!E221 (al): (11) 4-(111): Evident.

(i)*(ii): We establish the contrapositive Implication.

.IT T

*- ,v 3 >•Om -Au + c;>O, (-A u + c ;)3 O, [ >O has no solution

0--Ax -A.zi a 0, cO x + cizi + n a 0, x > 0. 0 # (zj,n) >0, has sol ution

(By Notzkin's theorem)

0 -Ax - O, cTx + n _ O, x > O, 0 # (xj,.) 10 has solution

4 -*(i-0) For each solution i of (3.4a), i+Xx is also a solu-

tion for any X.>0, where Ax aO, cTxo, x>O, O#xj>O

(n>O excluded, because it implies (3.4a) is unbounded below,

which is ruled out by primal-dual feasibility assumption)

" unbounded Xj

(t)--(iii): c x cT C bT - bT + T;>bT * iT >bTO + -TA

> bTG + UJII~ min Vm

Hence
ll;'iilll< (c x"- b u)/m'In v ,1Je

(a2): (11) 0(11): Evident.

4$



_V V~ _W AA _' .A. - . *l - - f . ' ";a -2 - '. * .'a

•4

(i)q-(il): We shall prove the contrapositive implication.
bI

S. Rows of A 1tn. dep. or A > 0 such that Ax a b

Rows of A 1 n. dep. or 0 0 bTu) >0 has solution

(By Motzkin's theorem)

~Rows of A 1in. dep. or 0 0 -ATu > O, bTu - 0 has solution

(Case of -ATu ). 0, bTu > 0, ruled out because it implies

(3.4b) is unbounded above which is impossible by primal-dual

feasibility assumption)

.. -P For each solution a of (3.4b), u + Au is also a solution

for any X > 0 where either bTu AO, ATu - O, u 0 or

bTu - 0, 0 0 -ATu > 0.

I unbounded 5

(i)-*(iii): Since ATG - c - and rows of A are linearly independent

it follows that a * (AAT) IA(c- ) and hence

l1511, 11 (AA T ' All, (llcillI + lll )

But

bTh < T cTh T< cTx x < cT 111 min m "

.. 1<1<nlc'c

, Hence

u/min xi
1~ ~~/ < c~bAli<n

and consequently

IIGlll II(AAT)'AIIll 0clil + (c . bTU)/min n xi)
4/,<_<

4.,%":'":" "";'"''"'""";2"'"'""':: "" " "' ""'" '"""- :"""""" .. " " " %2"'.
",., --. ... '-•• '. " /:'. ". -.. . - '.- ,- , - ., ' , , e ,,. ",,,.' .'. , ''' , - w
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(a3): (ii) 4m(iii): Evident.

() -(ii): We shall prove the contrapositive implication.

;2 such that R > 0, R > 0 and A - b

0-0ATu + v - O, bTu> 0, v> O, T v O, has solution

(By Motzkin's theorem)

41EEATu + v - 0, bTu -0, v > 0, V 0 has solution

(Case of bTu > 0, ATu + v - 0, v > 0, ruled out because

it implies (3.4b) is unbounded above which is impossible

by primal-dual feasibility assumption)

-For each solution (5, ) of (3.4b), (; +Xu, +Xv) is

also a solution for any > >0 where ATu + v - 0,

bTu -0. v > 0, v3  O.

" unbounded

(i)-o(iii): bT IJcTi cTi - X < cT i. -TA<T A

< cTR " ll;J II rain Rc

Hence

i, II~ol < (cTx"- bT.)/min x 0
..

4.

. ... .9 ... . .4 . . . ....... ,' . ' ' . '. - . . .......... ,.4-.
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ABSTRACT (continued)

solution z of the linear complementarity problem:

< z w/min w

1-norm~ Ii~~ E EI

where I =tl fi~ > 01. If w > 0 then this inequality provides a bound on the

ofaysolution point. Similarly each feasible point (x 0

of the primal linear program min c x subject to y =Ax -b >0 x >0, and

each feasible point (u,v) >0 of the dual linear program max b u subject to
T

v - -A u + c > 0, u > 0, provide the following simple bounds for any primal

optimal solution (x,y) and any dual optimal solution (u,v):

L X < Tx- _ u )/n < (TA TA
xt x EJ' E /mi (xb u)/min y.

where J ={ilv. > 01 and I = {ily. > 01. If v> 0 we have a bound on Ux1l,

*and if y > 0 we have a bound on huh211. In addition we show that the existence
of such numerical bounds is not only sufficient but is also necessary for the
boundedness of solution vector components for both the linear complementarity

V problem and the dual linear programs.



* 61,

844

D T I c


